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NSTX-U off-axis neutral beam suppresses Global Alfven
Eigenmodes (GAES) [E. Fredrickson, PRL 2017]
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@ NSTX-U

« Counter-propagating GAEs are
frequently observed in the sub-cyclotron
frequency range of 0.1f; up to 0.5f, in
NSTX and NSTX-U.

* Driven by cyclotron resonance with
beam ions.

* New neutral beam sources -> ability to
control the fast ion distribution.

» Off-axis neutral beams inject fast ions
onto trajectories largely parallel to the
magnetic field, with pitch 0.8<V /V<1.

» Reliable suppression of the counter-
propagating GAE when an additional
1.3MW is injected using the outboard
beam.
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New neutral beam sources on NSTX-U allowed
demonstration of GAESs stabilization

* NSTX-U had six beam sources, the
original three from NSTX with tangency
radii inboard of the magnetic axis (Ryq =
1.1 m)atR,,=0.7, 0.6, and 0.5 m,
(labeled 1a, 1b, 1c), and three new
outboard sources with R, = 1.3, 1.2,
and 1.1 m (labeled 2a, 2b, 2c).

 Off-axis neutral beams inject fast ions
onto trajectories largely parallel to the
magnetic field, with pitch 0.8<V,/V<1.

* New neutral beam sources -> ability to
control the fast ion distribution.
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Sketch of neutral beam geometry. Original NSTX
beams in green, labeled 1a, 1b, 1c; new beams
for NSTX-U shown in red labeled 2a, 2b and 2c.
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GAE stabilization has been well documented for many NSTX-U shots
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Three examples of GAE being suppressed by the injection of one of the three off-axis beam sources.
Figure 1(c) also shows that the GAE can reappear when the 2c power is turned off.

The measured GAE suppression time ~ few ms is much smaller than slowing-down time
(~50ms), suggesting that it takes relatively few high-pitch fast ions to suppress the GAE.
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Correlation between strong GAE/CAE activity and flattening of the electron
temperature profile has been observed in NSTX  [Stutman, PRL 2009]

f (MHz) 2 MW

Intense GAE/CAE activity (0.5-1.1MHz).

* Flattening of T, profile with
- increased beam power;
- beam energy scanned between 60 and 90 keV
[Stutman, PRL 2009].

* Was attributed to
- enhanced electron transport due to orbit
stochasticity in the presence of multiple GAEs
[Gorelenkov, NF 2010].
- energy channeling due to CAE coupling to KAW
[Belova, PRL 2015].

* Anomalously low T, potentially can have

significant implications for future fusion devices, 0.2 0'-4/0-6 0.8 0.0 02 0)4 06 08
E o ra r/a
especially low aspect ratio tokamaks. Correlation between GAE activity, T, flattening,

and central electron heat diffusivity X, in NSTX
H modes with 2, 4, and 6MW neutral beam.
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HYM — HYbrid and MHD code

Applications Code description
e NSTX » 3-D nonlinear.
- Sub-cyclotron frequency Alfven * Physical models:
eigenmodes (GAE and CAE) - Resistive MHD & Hall-MHD
» |ICC Theory and Modeling - Hybrid (fluid electrons, particle ions)
- Hybrid simulations of spheromak - MHD/particle (one-fluid thermal
merging plasma, + energetic particle ions)
- FRC: Effects of beam ions on - Drift-kinetic particle electrons
stability « Full-orbit kinetic ions.
- Rotation control » For particles: delta-f / full-f numerical
- n=2 rotational and n=1 wobble scheme.
modes » Parallel (3D domain decomposition,
MPI)
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Self-consistent MHD + fast ions coupling scheme

Background plasma - fluid: Fast ions — delta-F scheme:
dVv . : dx
—=-V —~ B-n, (E- Rk
P p+(-1,)xB—n,(E-7j) + =V
dv .
E=-VxB+y]j HZE_UJ_FVXB
B=B,+VxA
oA lot = —-E W=0F/F -particle weight
J=VxB dw d(in Fy)
op'” 1ot =V - (VpY'7) e —(1-w) ~

oplot=-V-(Vp) - E )
o = Fol& i Py

P, V and p are thermal plasma density, velocity and pressure, n, and j, are beam ion
density and current, and n, << n, —is assumed.
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Self-consistent anisotropic equilibrium including the NBI ions

Grad-Shafranov equation for two-component plasma:
MHD plasma (thermal) and fast ions [Belova et al, Phys. Plasmas 2003].

B=V¢xVy +hVg

821// o(1 al// ' ' '
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Modifications of equilibrium due to beam ions:

- more peaked current profile,
- anisotropic pressure,
- increase in Shafranov shift

might have indirect effect on stability.
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Fast ions — delta-f scheme: Fy=F(&,u,p,)

Equilibrium distribution function Fy = F;(v) F,(4) F3(p,.V)

I:1 (V) -

. for v<y,
V° vy

F,(A) =exp(— (1 - 1,)° 1 AX?)
(p¢ - po)ﬂ
(ReV =t — po)ﬂ |

Fs(pqu): for Py > Po
where v, = 2-5V,, V«=V, /2, 1= uByle — pitch angle parameter, 4,= 0.5-0.7,
and u= uy+ w, includes first-order corrections [Littlejohn’81]:

— 2 ~ N 2
V. =Va)” Mo 1 g - 2a-vb)-€]
2B 2B

v, Is magnetic gradient and curvature drift velo city, ¢=v /v, a=bxC .

,L[ =
Parameters are chosen to match TRANSP beam profiles.
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Simulations have been performed to study the excitation
and stabilization of GAEs in the NSTX-U
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(a) Spectrogram on magnetic
fluctuations (n=8-11 counter-GAES).
(b) Rms magnetic fluctuations;

(c) Injected beam power.

Plasma shape, g- and n, profiles
for NSTX-U shot 204707 t=0.44
from TRANSP and HYM GS
solver + FREE_FIX.
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HYM reproduces experimentally observed unstable GAEs
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(a) Spectrogram on magnetic

fluctuations (n=8-11 counter GAES).

(b) Rms magnetic fluctuations;
(c) Injected beam power.
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HYM #204707 t=0.44
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(a) Growth rates and (b)
frequencies of unstable counter-
GAEs from HYM simulations for
t=0.44s. Blue line is Doppler-shift
corrected frequencies, points —
experimental values.

» Simulations reproduce
most unstable toroidal
mode numbers and GAEs
frequencies.

 HYM overestimates
growth rates compared
experimental analysis by
2-3 times.

» Experiment:
n=-10 y/w,=0.84%
n=-11 y/w;=0.6%

» Growth rates are
sensitive to distribution
function parameters —
resonance particles are in
‘tail’ of distribution.
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NSTX-U simulations: n=-10 counter-GAE (1=0.44s)
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Nonlinear simulations: n=-11 counter-GAE (t=0.445s)
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Time evolution of perturbed magnetic
field components from nonlinear
simulations for n=-11 GAE.
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Nonlinear simulations show peak
saturation amplitudes of 6B/B,~5%103
at R~1.2m close to the minimum of the
Alfvén continuum, and 8B/B,~10 near
the edge at the midplane.

Unstable modes have shear Alfven
polarization in the core, and mixed
polarization at the edge.
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Improved F.,, fit allows more accurate description

Focam = €XP(—= (1= 4, (V)" / AL(V)")
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(a) TRANSP fast-ion distribution before the outboard
beam injection t=0.44.

(b)HYM fast-ion distribution from n=-11 GAE
simulations; dots show resonant particles.
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(a)Location of resonant particles in phase
space: A=pB/e vs p,,.

(b) Particle weight w ~ dF/F vs orbit-
averaged parallel velocity. Particle color
corresponds to different energies: from

E=0 (purple) to E=90keV (red).
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HYM simulations reproduce experimental finding: off-axis neutral beam
Injection reliably and strongly suppresses unstable GAEs

* The beam ion distribution function with

pitch distribution in the form F_ ~ exp[-(A- HYM #204707, t=0.44, t=0.47

1e-06 [~ | T T

Ao(a))Z/A)\(g)Z]' 1e.08 n=-11 E\/”_—
t=0.44s
 Additional off-axis beam injection 10 -
: : ) dB 2 |
modeled by adding beam ions with fe-12 .
distribution F_ 4~ exp[-A?/AA,(€)?], i.e. with fe-14 -
A,=0, AA_<AA and about 1/3 of the total fe-16 |- | -
beam ion inventory or less. 0 200 400 600 800 1000
toyg

 HYM shows complete linear stabilization Ti . .

. ime evolution of magnetic energy of
of n=7-12 counter-GAEs by additional off- n=-11 GAE from HYM simulations for

axis beam injection. t=0.44s (red), and t=0.47s (blue).
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Complete stabilization of all unstable GAEs requires an additional
beam power significantly lower than what was used in NSTX-U

 Off-axis beam injection has been
modelled by adding beam ions with 0.025

distribution Fqq ~ exp[-A2/AA (€)?], and RN i
varying density. N

* Fraction of off-axis beam population of B BN\ |
the total fast ion inventory has been varied oot .
from 4% tO 17%. o.oos .-..:i“x -
» Unstable n=-11 GAE is stabilized when . :\_ .

the fraction of the additional beam ions is

larger than 7%. Naga/ Neot

R : Growth rates of n=-11 (blue), -10
- Stabilization threshold is lower for lower (red), -9 (green) GAES(VS frziction of

n modes. outboard beam ion population.

Experimental values of fraction of outboard
beam power vs total beam power in NSTX-
U were ~24-30%.
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GAE stabilization is consistent with analytic predictions

Analytical instability condition: 2 < k,p,< 4 [Gorelenkov,2003] — large pitch

particles are stabilizing.
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TRANSP fast-ion distribution before and
after the outboard beam injection. Fast ions
with pitch v, /v~1 are responsible for GAE
suppression [Fredrickson,2017].
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Fast-ion distribution from HYM simulations
before the outboard beam injection and for case
with N_44/N;,=5% (n=9,10 are stable). Cyclotron
resonance lines are shown for n=9,10,11 GAEs.
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Summary and Future Work

« HYM simulations show range of toroidal mode numbers, and frequencies of
unstable GAEs that match the experimentally observed GAEs in NSTX-U.

« Growth rates and saturation amplitudes of GAEs are overestimated in
simulations.

« Simulations reproduce experimental finding, namely it is shown that off-axis
neutral beam injection reliably and strongly suppresses all unstable GAEs.

» Avery effective mechanism for stabilizing GAEs - threshold for stabilization
for additional beam is less than 7% of total beam power.

Future work:

« Bulk plasma rotation and Hall term can have effect on GAE stability and
mode structure.

« Comparison with experimental results including mode structure, saturation
amplitudes and etc for several shots.
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